八零资讯

《分数除法》教学设计

kingkacn

更新时间:1周前

《分数除法》教学设计(通用11篇)

  在教学工作者开展教学活动前,可能需要进行教学设计编写工作,借助教学设计可以更好地组织教学活动。我们应该怎么写教学设计呢?以下是小编为大家收集的《分数除法》教学设计,仅供参考,希望能够帮助到大家。

  《分数除法》教学设计 1

  教学目标:

  1、能根据分数乘法应用题的数量关系,理解、掌握分数除法应用题的数量关系,并用方程或除法正确列式解答。

  2、提高学生分析问题的能力。

  3、培养学生养成良好的审题习惯。

  教学重难点:

  理解、掌握分数除法应用题的数量关系,并用方程或除法正确列式解答。

  教学准备:

  电教媒体

  教学过程:

  一、教学准备

  1.说下列各句中单位“1”的量及想到的数量关系式。

  (1)我的身高是爸爸的

  (2)小华的邮票张数比小芳多

  (3)十月份的电费比九月份减少

  (4)小瓶里的果汁是大瓶的

  小结:单位“1”的量×对应分率=对应量

  2.请学生由(4)编题:编一道一步计算的分数乘法题。

  师根据学生回答板书:一大瓶果汁有900毫升,一小瓶里的

  果汁是大瓶的 ,一小瓶里果汁有多少毫升?

  问:你认为编得对不对?为什么能确认?

  (1)学生列式解答(口答)。

  (2)为什么用900× ?

  (3)小结:(板书)一大瓶果汁数量× =一小瓶果汁数量

  二、新授

  1.改编成例5:一小瓶里的果汁是大瓶的 ,一小瓶果汁有

  600毫升,一大瓶里果汁有多少毫升?

  (1)读题,比较异同:

  变:条件、问题的位置变了

  不变:单位“1”的量没变,数量关系式没变。

  (2)怎么解答?生试做,汇报

  方程:解设一大瓶x毫升

  x=600

  算式:600÷

  x=600× =600×

  x=900=900(毫升)

  (1)说想法

  (2)怎么检验?

  900× =600(毫升) 或600÷900=

  (3)再次比较二题的异同

  小结解题步骤:

  ①找单位“1”的量,想数量关系式

  ②看问题

  ③列式解答

  ④检验

  2.按照解题步骤完成“试一试”

  ①读题

  ②说单位“1”的`量及数量关系式

  ③解答

  ④汇报

  3.按步骤解答练习十二第1题

  4.总结、揭题:

  (1)总结:求单位“1”的量是多少,可以列方程解答,也可以用对应量÷对应分率=单位“1”的量

  (2)揭题:这就是今天学习的“分数除法的实际问题”(板书)

  三、练习

  1.完成练习十二第3题

  小结:为什么都用除法计算?(都是求单位“1”的量。)

  2.课作:练一练、练习十二第2题

  练习十二第2题改乘法题

  3.看关键句,分别编一道乘法题,一道除法题

  “黑兔只数是白兔的3/5。”

  《分数除法》教学设计 2

  内容:

  本册教科书第28页例2和练习八第1~4题。

  教学目的:

  使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,正确计算一个数除以分数。

  教学过程:

  一、复习

  1、说出下列各分数的分数单位,每个分数中有几个这样的分数单位,并说出每个分数的倒数。

  1/5、3/4、7/16、9/9

  2、口算下面各题。

  1/6÷3、4/5÷2、3/8÷6、6/7÷2

  提问:怎样计算分数除以整数的题目?(用分数乘以整数的倒数。)

  3、解答应用题。

  一辆汽车2小时行驶90千米,1小时行驶多少千米?(第28页的准备题。)

  提问:这道题要求的是哪个数量?(求速度。)根据已学的数量关系怎样求速度?(板书:速度=路程÷时间)

  指定一名学生列式解答。

  二、新课

  揭示课题:我们已经学过分数除以整数,如果除数是分数,该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。

  1、出示例题。

  一辆汽车小时行驶18千米,1小时行驶多少千米?

  提问:这道题要求哪一个数量?根据已学过的数量关系,这道题应该怎样列式?

  指名列出算式,教师板书:18÷。

  2、教学整数除以分数的计算方法。

  教师先在黑板上画一条线段。然后提问:在图上怎样表示“小时行驶18千米”这个已知条件?(引导学生回答,教师画出。)先把这条线段平均分成5份,每份表示小时行的;在这样的两份下面注明“小时行驶18千米”。

  提问:“1小时行驶多少千米,在图上怎样表示?”(指名回答,教师画。)因为1小时是5个小时,在这条线段的5份上面注明“1小时行驶?千米”。

  提问:要求1小时行驶多少千米,根据线段图该怎样推想呢?可以先求什么?(启发学生说出,可以先求小时行驶多少千米。)

  提问:图上哪一段表示小时行驶的路程?(教师在图上左边的'一份上面注明“小时行驶?千米”。)

  提问:怎样求出小时行驶多少千米?(启发学生说出小时里有2个小时,2个小时行驶18千米,用18÷2就可以求出小时行驶的千米数。)

  提问:18÷2也就是求18的几分之几?可以怎样写?(学生回答后教师写出“18”。)

  提问:现在已经求出小时行驶的千米数,怎样求出1小时行驶的千米数?(启发学生说出,1小时里有5个小时,要用小时行驶的千米数乘上5。)然后教师在“18”后面再写“5”。

  提问:想一想,根据乘法结合律,185还可以怎样写?(启发学生说出,先把和5相乘。)教师板书:18(5)=185=18。

  提问:“由上面的推想过程,18÷转化成什么样的计算了?”学生回答后,教师边重复学生的回答,边写出下面的计算过程:

  18÷==45(千米)

  写出答案“答:汽车1小时行驶45千米。”

  3、引导学生小结。

  “整数除以分数,等于整数乘上除数的倒数。”

  三、看教科书中新课内容后试算

  全体学生独立计算“做一做”中的练习题:

  12÷24÷

  集体订正计算过程及结果,并提问一个数除以分数的法则。

  四、课堂练习

  在练习本上计算练习八第1、2题,然后订正计算结果。

  五、总结

  今天学习了什么新知识?

  整数除以分数的计算法则是什么?

  计算整数除以分数应注意什么?

  六、布置作业

  1、阅读教科书第28~29页的内容。

  2、在练习本上做练习八第3、4题。

  《分数除法》教学设计 3

  教学目标:

  1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

  2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。

  3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重难点:

  重点:掌握分数与除法的关系,会用分数表示两个数相除的商。

  难点:理解可以用分数表示两个数相除的商。

  教学过程:

  一、导入揭题。

  1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的`分数单位。

  2、观察:5÷8=4÷9=这两道题能得到整数商吗?

  3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

  二、探索新知

  1、教学例1

  (1)课件出示例1

  把一个蛋糕平均分给3人,每人分得多少个?

  (2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

  (3)汇报讨论结果

  (4)观察这两种解法有什么联系?

  2、教学例2、

  把3个饼平均分给4个孩子,每个孩子分得多少个?

  (1)平均分同样可以列式为:3÷4。

  (2)小组合作探究:3÷4的商能不能用分数表示呢?

  (3)通过进一步探究,你发现分数与除法有什么关系了吗?

  师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?

  三、拓展应用

  一个正方形的周长是64cm,它的边长是周长的几分之几?

  四、总结

  通过这节课的学习,你有什么收获?

  五、作业布置

  完成教材第50页"做一做"

  《分数除法》教学设计 4

  教学设想:

  1、注重考虑学生的知识起点,引发学生的认知冲突,让学生感知“用分数表示除法的商”的产生与发展的过程。

  2、充分利用学习材料,引导学生自主探索、交流合作、解决问题,从而实现数学的再创造,突出学习的自主性(感知→猜想→验证→概括→巩固),真正理解分数商的由来和所表示的意义。

  3、创设有效的问题情境,通过的学生猜想、说理、比较、概括等途径,突出教学重点,训练学生思维。

  教学目标:

  1、理解分数与除法的关系,知道如何用分数表示除法算式的商。

  2、培养学生动手操作、合作交流和灵活运用知识的能力。

  3、通过学习,培养学生转化的数学思想和勇于探索的精神。

  教学重点:

  理解分数与除法的`关系。

  教学难点:

  具体体会每一个商的由来和表示的含义。

  教学过程:

  一、感知关系

  1、问题:把6米长的绳子平均分成3段。每段长多少米?

  把1米长的绳子平均分成3段。每段长多少米?

  提问:怎样计算每一段的长度?商是多少?为什么?(画线段图)

  2、揭题、猜想关系:你能猜想一下分数与除法有着怎样的关系呢?

  板书:被除数÷除数=被除数/除数

  二、探究关系

  1、验证关系

  (1)通过动手操作验证

  出示实例:把3块饼平均分给4个小朋友,每人分得多少块?

  列式质疑:3÷4=(师:商可能是几?为什么?你能否验证一下呢?)

  动手操作:剪拼纸圆,研究3÷4的商的由来和表示的含义。

  同桌交流:结合操作,请跟你的同桌说说3÷4的商是多少及其由来。

  反馈验证

  引导总结:把3块饼平均分成4份,每份是3块饼的1/4→1块饼的3/4,即3/4块。

  板书:3÷4=3/4

  (2)运用分数意义验证

  师:刚才是通过操作验证了3÷4=3/4,我们还能否通过其他途径来验证分数与除法的关系吗?

  出示例[2]:17分是几分之几小时?

  引导列式,借助钟面图,结合分数的意义求商(师:17÷60=?你是怎样想的?)

  1÷60=1/6017÷60=17/60(小时)

  引导小结:分数与除法之间的关系,还可以用来转化名数。

  2、揭示关系

  师:通过刚才的验证,你得出了哪些结论?

  ①两个数相除,当商不是整数时,可以用分数来表示。

  ②被除数÷除数=被除数/除数。

  师:我们已经通过实例验证了分数与除法的关系,你能结合具体算式将“分数与除法关系表”填写完整吗?

  联系

  区别

  除法

  被除数

  除号

  除数

  是一种运算

  分数

  师:如果用字母a、b分别表示被除数和除数,那么你能不能用字母关系式清楚地表示除法与分数的关系呢?根据学生回答板书:a÷b=a/b

  引导推理:除法里有什么具体要求?为什么?那分数有没有要求呢?(引导从分数所表示的意义说明没有意义)板书:b≠0

  三、巩固关系

  1、强化分数与除法的关系。

  ①P、822

  ②(P、824)

  ③填上合适的分数8cm=()m13g=()kg15dm2=()m229分=()小时

  ④在括号里填上合适的数()÷()=5/8,3/5=()÷(),()/()=()÷()

  2、比较练习,完成P、823

  ①学生选择条件,列式解答。

  ②引导比较:联系—都占总数的1/3,区别—能否用整数表示商

  四、总结提升

  师:分数与除法有些什么关系呢?我们一起来回顾一下。(生:……)

  质疑:5/8这个分数表示的意义是什么?还可以怎样理解?

  《分数除法》教学设计 5

  一、求一个数的倒数。

  1、出示数据。

  1/91113/512/3。

  2、求出以上数的倒数。

  91/115/1313/2。

  1的倒数是它本身。

  二、计算分数乘除法。

  1、出示计算题。

  8×1/43/4÷44/9÷3/24/5÷44/7÷7/4。

  2、计算以上各题。

  三、解决方程。

  1/9x=2/32/3x=54。

  7/4x=358x=42。

  1.5x=28.5。

  四、解决问题:

  1、练习三第4题。

  2、练习三第5题可以用解方程的方法也可以用算术方法解决问题。

  3、完成第6-9题。

  方法同上。

  4、完成第10题。

  学生可能有不同的'解决问题的方法,可以根据分数除以整数的意义进行解答。

  1/3÷3=1/9也可以列出方程进行学生活动。

  学生观察数据。

  独立写出各数的倒数。

  然后交流纠正。

  学生看清乘除法,然后独立计算,进行交流,除以一个数是乘这个数的倒数。

  学生独立解决。

  指名板演。

  集体交流纠正。

  学生认真审题,用方程解决问题。

  说一说解设。

  然后全班交流。

  学生仔细审题,找出数量关系,列成计算然后进行交流。

  同上。

  1÷1/9=9(天)。

  解答:1/3x=3。

  x=9。

  板书设计练习三。

  1/9×9/111×1/11。

  3/4÷4=3/4×1/4=3/16。

  解:设:校园总面积为xm2。

  3/40x=660。

  x=8800答:校园总面积为8800m2教学反思。

  学生计算掌握的可以,但是把分数乘法、分数除法应用题防在一起,有时还是混淆。这大概是不十分理解吧!

  《分数除法》教学设计 6

  单元教材分析

  本单元是在学生学习了整数乘除法以及解简易方程,学习了分数乘法知识的基础上,学习分数除法和比的初步知识.这些知识为学生学习分数除法打下了基础,学习本单元的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用.教材内容包括:分数除法,解决问题,比和比的应用.这些知识都是学生进一步学习的重要基础,通过本单元的学习,学生一方面基本上完成了分数加,减,除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础.两方面的收获,都将在进一步的学习中发挥重要的作用.

  单元教学目标

  1、使学生在具体情景中,感知分数除法的意义,掌握分数除法的计算方法,能正确地用口算或笔算的方法进行分数除法的计算.

  2、使学生学分用分数除法来解决已知一个数的几分之几是多少,求这个数的实际问题.

  3、理解比的意义和比的基本性质,知道比与分数,除法之间的关系,能正确地求比值和化简比,能运用比的有关知识解决实际问题.

  4、让学生在具体生动的情景中感受学习数学的价值.

  单元教学重点

  1、分数除法的计算;

  2、分数除法问题的解答;

  3、比的意义和基本性质的理解与运用.

  单元教学难点

  1、理解分数除法计算法则的算理;

  2、比的应用.

  1、分数除法

  教学目标

  1、理解分数除法的意义,指导并初步掌握分数除以整数的计算法则,能正确地计算分数除以整数。

  2、使学生理解整数除以分数的算理,掌握一个数除以分数的`计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。

  教学重点

  1、理解分数除法的意义与整数除法的意义相同。

  2、学会分数除以整数的计算法则,并能应用法则正确计算。

  3、一个数除以分数的算理。

  4、掌握分数除法的统一法则。

  教学难点

  1、学会分数除以整数的计算法则,并能应用法则正确计算。

  2、引导学生推导出整数除以分数的方法。

  3、对于一个数除以分数的算理的理解。

  第一课时分数除法的意义和分数除以整数

  教学过程:

  一、创设情景导入:

  同学们,前面我们学习了分数乘法,掌握了它的意义和计算法则,并用它解决了相应的实际问题。这节课开始老师将和你们一起去逐步探究分数除法的意义和计算法则,还要解决相应的实际问题。本节课我们先探究分数除法的意义和分数除以整数。

  二、新知探究:

  (一)分数除法的意义

  1、出示例1的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式.

  2、你能把上面的问题改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)

  3、100g=1/10kg,你能将上面的问题改成用kg作单位的吗(引导学生将整数乘除法应用题改变成分数乘除法应用题)

  4、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义.

  5、练习:课本28页做一做.学生独立练习,订正时让学生说明为什么这样填.

  (二)分数除以整数

  1、小组学习活动:

  问题⑴把一张纸的4/5平均分成2份,每份是这张长方形纸的几分之几?

  问题⑵把一张纸的4/5平均分成3份,每份是这张长方形纸的几分之几?

  [活动要求]

  ①先独立动手操作,再在组内交流,

  ②讨论:通过折纸操作和计算,你发现了几种折纸方式,每种方式应怎样列式计算?你发现了什么规律?

  2、汇报学习结果:

  3、学生独立阅读教材

  4、归纳总结:这节课你们学会了什么?

  指导学生归纳出:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数.

  三、巩固与提高

  ①把7/8平均分成4份,每份是多少?什么数乘6等于3/17?

  ②如果a是一个不等于0的自然数,1/3÷a等于多少?1/a÷3等于多少?你能用一个具体的数检验上面的结果吗

  四、课后作业

  练习八第1、2、3题

  五、板书设计:

  分数除法的意义和分数除以整数

  例1.100×3=300(ɡ)1/10×3=3/10(㎏)

  300÷3=100(ɡ)3/10÷3=1/10(㎏)

  300÷100=3(盒)3/10÷1/10=3(盒)

  例2.4/5÷2=4÷2/5=2/54/5÷2=4/5×1/2=2/5

  4/5÷3=4/5×1/3=4/15

  《分数除法》教学设计 7

  一、说教材:

  1、掌握一个数除以分数的方法,并能正确计算。

  2、经历猜测、验证和归纳的过程,利用通分法计算的结果来推理出倒数法计算的过程。

  3、利用数形结合的方式,体会“转化”的数学思维方法。

  本课时的教学重点是运用计算方法正确进行计算,教学难点是理解一个数除以分数的计算方法。

  二、说教法和学法:

  本课时教师在教学中引导学生多看图观察,让学生经历猜测、验证和归纳的学习过程,使他们通过小组合作理解计算法则。

  三、教、学具准备。

  老师准备平均分成2份、3份和4份的圆纸片各4张,为学生准备一张练习纸,练习纸上画好三组没有平均分的圆纸片和书第27页上画一画的题目,把书中已画出的部分隐去,让学生亲自去画。

  四、说教学过程:

  1、复习铺垫,提供猜测基础。

  数学的学习离不开学生的经验基础和认知水平,为了让学生能正确理解本课时内容,我首先出示复习题1:“把1/2张饼平均分给4个小朋友,每个小朋友能分到几张饼?”学生根据前一课时所学方法分别用倒数法:1/2÷4=1/2×1/4=1/8(张)或者用通分法:1/2÷4=1×4/2×4÷4=1/8(张)通过列式计算。然后让学生说一说计算法则。

  接着出示题2:有4张同样大的饼,每2张一份,可分成多少份?

  在解答这两题的基础上,我提出问题:猜一猜4÷1/2等于几?由于受到上一课时的负迁移,部分学生仍然会用一个分数乘整数的倒数,算成:1/4×1/2=1/8,当然也可能会正确计算出结果。这时教师适时引导学生明白:判断一个猜想是否正确,需要通过科学地验证。

  这样的设计既为学生提供了学习新知识的经验基础,又能激起学生学习新知识的兴趣。

  2、验证猜想,理解计算过程。

  为了让学生更易理解题意,我把书中情境图改成具有生活气息的题目:有4张同样大的饼。每个小朋友吃1/2张,可分给几个小朋友吃?

  学生在练习纸上画出平均分的过程,并通过小组合作形式理解计算的过程。反馈时,教师引导学生用自己的话说清计算的思路,大部分学生会认为1张饼里有2个1/2,可以分给2个小朋友吃,4张饼就能分别8个小朋友吃,列式为:4÷1/2=4×2=8(个)。但这个过程并不能使学生自然过渡到对倒数法解题的理解,也就是说,学生通过4÷1/2=4×2=8(个)并不能理解4÷1/2可以用4×1/2的倒数来计算。这时我引进了通分法来计算:让学生观察示意图,理解4÷1/2就是求4里面含有几个1/2。而4就是8/2,根据学生以前知识结构,学生易于知道里有8个,最后根据学生的回答板书计算方法,4÷1/2=8÷1/2=8;追问:8是怎样算出来的?学生再次从计算的角度去思考:当两个分数的分母相同时,只需要用被除数的分子除以除数的分子就能求出商。

  由于通分法计算遵从了学生的认知水平,易于被学生尤其是学困生理解,而倒数法的意义很难被学生理解,但它简洁的计算过程又是今后学习不可或缺的。所以在教学中我把两种计算方法同时渗透,力求使让通分法成为理解倒数法的基石。

  这个教学过程完成了教学目标中的“让学生经历猜测、验证和归纳的过程,利用数形结合的方式,体会“转化”的数学思维方法。”

  3、大量练习,使用计算方法。

  数学的归纳过程不是把一个单一的数学现象,而是把一系列有相同特点的数学现象抽象成具有代表意义的符号特征,这就是建模过程。

  为了让学生能充分感知一个数除以分数的计算过程,我先出示了两道变式题:每个小朋友吃1/3张、1/4张饼,可分给几个小朋友吃?让学生模仿前面的例题进行实际操作,独立完成计算,教师巡视中加强学困生的辅导。

  由于前面几个除数的分子都是1,学生还不会去有意识地总结计算方法,仍会去想:只要看看一张饼里有几个这个分数,然后再用4去乘个数就行了。所以此时让学生归纳倒数法计算的方法还为时过早,为了使学生摆脱这种思维的束缚,真正从倒数的角度去观察和体会除数的变化,我又引进了变式题:每个小朋友吃2/3张饼,可分给几个小朋友吃?

  这时学生通过画图不再能看出一张饼可以分给几个小朋友吃了,引起学生认知经验的冲突。教师要求学生以合作的形式根据黑板上的板书去解答,并说一说:你是怎样思考的?由于倒数法计算很难说清算理,反馈时学生大多会借用通分法来说明:4÷2/3=12/3÷2/3=6。根据教学目标对通分法运用的定位(是为了使学生相信倒数法计算结果是正确的。),此时一定要让学生再次进行尝试:你们能用倒数法进行计算吗?边计算边观察:什么在变?什么不变?让学生独立计算,如果他们把被除数变成了倒数,肯定与通分法计算的结果不同,这时会自行修正,并体会老师提出的问题:什么在变?什么不变?

  接着出示书中“画一画”的练习,以同桌合作的方式,再次让学生体会借用图形来理解计算的优势,认识数形结合对数学解题的帮助,从而完成这三个教学目标。

  在大量计算的基础上,引导学生观察这些算式,然后用自己的.话归纳出一个数除以分数的计算方法。

  4、观察比较,选择计算方法。

  让学生观察用通分法与倒数法的计算过程,体会倒数法在计算中简洁优美。但让学生体会:如果觉得通分法更适合,也可以使用通分法进行计算。

  《数学课程标准》提倡让不同的人在数学上得到不同的发展,对于数学认知水平较低的学生,允许他选择并不优化的方法,等知识水平有了进步再来运用其他更有利的方法进行学习。

  5、归纳总结,完善计算法则。

  通过前面多次的叙述和大量的计算,计算法则已是呼之欲出了,但学生的语言不够简洁扼要。这时我提出:看谁说的计算方法与数学家说的方法最接近?并说出前一部分:“一个数除以分数等于——”。让学生接着完成后面的部分。最后出示书中的计算方法,并对学生的归纳总结提出鼓励性评价——太棒了,你们大多数都有数学家的天份。

  五、说板书:

  板书内容较多,从学生的猜测到验证过程,一步步引导学生体会数学的学习方法,为学生选择自己喜欢的计算方法提供了直观可靠的依据。

  《分数除法》教学设计 8

  教学目标:

  1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

  2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。

  3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

  教学重点:

  理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:

  分数除以整数计算法则的.推导过程。

  教学准备:

  多媒体课件、长方形纸等。

  教学过程:

  一、旧知复习,蕴伏铺垫

  复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

  1、展示问题:

  (1)什么是倒数?

  (2)你能举出几对倒数的例子吗?

  (3)如何求一个数的倒数?

  2、展示多媒体:笑笑和淘气去买白糖。

  问题1:他们每人买了两袋白糖,一共买了多少袋白糖?

  问题2:这些白糖一共重2千克,每袋白糖有多重?

  问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?

  二、创设情境,理解意义

  展示多媒体:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

  1、利用准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。

  2、汇报

  三、大胆猜想

  学生通过操作,明白2/7是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。

  四、再次探究

  1、学生很快发现有些算式是无法用以上结论计算出来的,如4/7÷3,分子4除以3是除不尽的。

  2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。

  3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

  除以一个整数(零除外)等于乘这个整数的倒数。

  《分数除法》教学设计 9

  一、教学目标

  1、结合具体事例,经历分数除以整数的过程。

  2、掌握分数除以整数的计算方法,能够进行分数除以整数的计算。

  3、积极参与数学学习活动,有克服困难和运用知识解决问题的成功体验。

  二、教学准备

  小黑板,口算卡。

  三、创设情境。

  1、复习导入(一生说数,另一生说出它的倒数)。

  2、口算练习:(1)205(2)488(3)364.201/5481/8361/4。

  四、自主探究。

  (一)根据口算找规律。

  1、提问:通过以上计算,你发现了什么?

  预设:学生可能说出:

  (1)每组的计算结果相同。

  (2)除以一个数和乘以这个数的倒数的.结果是一样的。

  (3)每组算式里都有一个除法和一个乘法,符号后面的两个数互为倒数,其结果都是相同的。

  2、教师引导。

  如果用甲数表示被除数,乙数表示除数,那么你能得出什么结论来呢?

  师生总结:甲数乙数(0除外)=甲数乙数的倒数。

  预设:学生可能想不到除数不能为0。

  师引导:所以的数都能作除数吗?

  3、验证以上结论:

  (二)请学生参照以上口算习题,自己试着举出几组来。

  1、出示分饼例题。

  学生用自己喜欢的方法尝试解决。(教师为学生准备了圆片)。

  预设:学生可能会出现两种想法。

  (1)把1/2张大饼平均分成三份,就是把一张大饼平均分成(23=)6份,每份是1/6。(学生可能结合折图片来加以说明)。

  (2)求每份是多少,就是求的是多少?

  教师根据学生的汇报情况,随机板书。

  2、学生观察计算过程,谈发现。

  3、师生共同总结分数除以一个数的计算方法。

  分数除以一个数(0除外)等于分数乘这个数的倒数。

  五、巩固练习。

  1、完成试一试。

  学生练习。(集体订正时,让学生说一说自己是怎么想的?)。

  2、完成练一练。

  第1、2、4题:学生完成后,汇报解题思路。师生共同交流。

  六、交流收获。

  通过这节课的学习,你有哪些收获?

  《分数除法》教学设计 10

  教学目标:

  1、使学生经历整数除以分数计算方法的过程,理解并掌握整数除以分数计算方法,通过比较,能正确地计算整数除以分数和整数除以分数的试题。

  2、使学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

  3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功的乐趣,增加学好数学的信心。

  教学重难点

  理解并掌握整数除以分数计算方法,通过比较,能正确地计算整数除以分数和整数除以分数的试题。

  教学过程:

  一、回顾整理,熟悉法则。

  1、口算。

  9/10÷3=4/7÷4=3/10÷1=3/5÷6=

  口答出答案,并说出得到答案的具体过程。分数除以整数:是用分数乘整数的倒数。

  2、梳理相关的知识。

  分数除以整数的计算法则:分数除以整数,只要用分数乘以整数的倒数。

  举例说说分数除以整数的意义:把9/10平均分成3份,每份是多少?

  二、激活记忆,引出课题。

  1、出示课件。

  幼儿园李老师把4个同样大的饼分给小朋友。

  每人吃2个,可以分给几个人?(口答答案和算式)

  每人吃1个,可以分给几个人?(口答答案和算式)

  每人吃1/2个,可以分给几个人?(口答答案和算式)

  板书:4÷1/2=8(个)

  2、观察算式,引出课题。

  观察算式,揭示课题——整数除以分数。

  三、探究算法,形成法则。

  1、交流得数8个人的想法。

  分一分,让学生动手分一分,体会8个苹果的由来;用算式表示4×2=8;比较算式4÷1/2=8和4×2=8,观察它们之间的联系,形成整数除以分数的算法,4÷1/2=4×2=8。

  2、变换数据,增加感性认识。

  每人吃1/3个,可以分给几个人?每人吃1/4个,又可以分给几个人?

  先列算式,再在图中分一分得出结果,最后把算式写完整。

  4÷1/3=4×3=12(个)

  4÷1/4=4×4=16(个)

  3、出示课件

  有1根2米长的绳子

  (1)截成每段1/2米,可以截几段?

  (2)截成每段1/3米,可以截几段?

  (3)截成每段长2/3米,可以截几段?

  列出算式;在图中分一分,写出结果;思考计算方法,形成法则后再计算。

  4÷2/3=4×3/2=6(段)

  4、交流,形成计算法则。

  小组交流整数除以分数的计算法则,再班级交流,形成整数除以分数的计算法则:整数除以分数,只要整数乘分数的倒数。

  四、巩固练习,形成技能。

  1、完成练一练。

  12÷2/3=12×()/()9÷6/7=9×()/()

  10÷2/5=8÷2/3=3÷6/7=12÷8/7=

  2、8÷6/75/12÷3

  除以一个数(0除外),等于乘这个数的倒数。

  3、课堂作业。

  6÷1/42/3÷1/54/9÷2/38/3÷41/3÷3/45/6÷1/43/7÷75/7÷7/5

  4、1壶水可以装几杯?

  五、课堂总结

  本节课你有什么收获?

  教学反思:

  1、创设生活情境:

  数学知识来源于生活。通过创设幼儿园的老师分饼的生活情境来激发学生对知识的求知,增强学生的探索欲望,从而感悟学习数学的意义和必要。

  2、注重自主探索:

  学生有了知识的求知欲望后,赶紧让他们在小组内自主探索,借助圆片和图形语言理解理解整数除以分数的意义。通过观察,比较,思考与讨论,自主发现知识的内在联系,体会"除以分数"与"乘这个数的倒数"之间的关系。

  3、经历知识的.形成:

  数学的学习过程注重学习的效果,更注重知识的学习过程。于是,我让学生通过自己的操作猜想整数除以分数的计算方法,并借助图形语言来验证知识的形成,如4÷1/2=8是怎样得出学生就能借助图形语言自己探索出每张分了2个1/2,4张就有8个1/2。从而培养学生学习数学的能力和逻辑推理能力,体会数学知识的严密性,还让学生明白了知识或真理是能接受实践的验证的,为以后同学们的学习猜想提供了很好的学习方法.

  4、练习循序渐进:

  设计练习时,我在算一算里安排有层次的计算,让学生先算简单的不需要约分,再算需要约分的,最后算要化成带分数的算式,满足了不同的学生有不同的收获。然后把所学的知识回归生活,解决实际问题。

  《分数除法》教学设计 11

  【教学目标】

  1、借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

  2、掌握一个数除以分数的计算方法,并能正确的计算。

  3、培养学生乐于交流、喜欢数学的情操,感受数学来源于生活。

  【教学重点】

  一个数除以分数的计算法则推导过程。

  【教学过程】

  课前谈话:

  《皇帝内经》中说春天是一个生发的季节,对于你们小孩子来说,要多运动才能长高个,那么春天还是一个美容的季节,爱美的女士们在这个季节要注重皮肤护理,多做面膜多补水。春天还是一个开始减肥的最佳季节,夏天可以穿漂亮的衣服,美美的。和老师聊天长知识吧?老师希望你们像我一样,多留心观察生活,积累生活经验。

  一、课前导入

  昨天毕老师问我,夏天马上到了,有没有一种快速减肥的方法?于是我给毕老师介绍了一款素食减肥营养饼。这素食减肥营养饼,胖子吃了能变瘦,瘦子吃了能变壮,于是我给办公室几个老师限量赠送四张饼,并制定了饮食计划。孙老师每天吃2张,白老师每天吃1张,毕老师每天吃半张,袁老师每天吃四分之一张,听到这里,你想知道什么?

  生1:谁每天吃最少?(这都知道了)

  生2:他们能吃几天?(太棒了)

  二、新知探究

  (一)探究整数除以分数

  1.下面请同学们结合学习指南,完成学习单上第一部分内容。

  指名读学习指南。(附:学习指南)

  1、独立思考:

  (1)分一分:把分饼的过程用算式记录下来。

  (2)想一想:结合分饼的过程,总结算法。

  2、合作交流:与组员分享自己的想法。

  师:明白学习指南的要求了吗?现在开始。(学生完成,教师巡视抽取样本)

  (学生独立完成学习单,时间3分钟。学生小组讨论时间2分50秒。)

  2.组织汇报:

  师:请你结合分饼过程说一说算式中每一个数字的意义。

  生1:第一个算式:4÷2=2,4表示4张饼,每天吃2张,2表示能吃2天。

  第二个算式:4÷1=4,4表示4张饼,每天吃1张,4表示能吃4天。

  第三个算式:4÷=4×2=8张饼,每天吃这张饼的二分之一,每张饼分两份,一张饼吃两天,4乘2,表示吃8天。

  第四个算式:4÷=4×4=16张饼,每天吃这张饼的四分之一,每张饼分四份,一张饼吃四天,4乘4,表示吃16天。

  师:你说的太棒了,我还想请你再说一说,算式中4乘2和4乘4中的2和4在图中表示什么?

  生:2表示每张饼分成2份,一张饼吃2天,4张饼可以吃8天,4表示4分之一的倒数,代表一张饼吃4天,4乘4等于16天。

  师:太棒了,给她点掌声。这个同学解释了2遍,我相信你们一定能听懂。

  这两个算式是整数除以分数,通过这两个算式的计算过程你发现了什么?

  生:一个数除以另一个数等于一个乘这个数的倒数。

  师:一个数和另一个数我们用整数除以分数代表更准确些。

  观察这四个算式有什么相同点和不同点。

  生:他们每人都有四张饼

  师:这是从表象上看,我们可以算式更深层次去分析。前两道题是整数除以整数的除法算式,后两道是整数除以分数的除法算式,他们都是求4里面有几个除数。也就是说整数除法算式和分数除法算式意义有什么关系?

  生:是不是可以把分数除法转化为分数乘法?

  师:no,我是说意义上,前两个和后两个算式都是在求4里面有几个除数,也就是说整数除法意义和分数除法意义有什么关系?就两个字。

  生:相同

  师:有什么不同点?

  生:以1为分界线,1往上,商比被除数小,1的话,商和被除数相等,1往下,商比被除数大。

  师:说的不错,但是就以这两个题,其实我们在找不同点的.时候,可以从计算方法上去分析。前两道整数除以整数除法你是怎么计算的,后两道整数除以分数你是怎么计算的?

  生:整数除以整数直接除,整数除以分数把分数变成它的倒数。

  师:说的特别好,掌声送给他。奖励20分当家币。

  (二)探究分数除以分数

  演算法验证

  师:刚才我们结合分饼的过程掌握了整数除以分数计算方法,那么这种方法针对分数除以分数也同样适用吗?我们来看这道题,(÷)谁会算?

  生:÷,我打算把变成倒数,用乘,3和9约分,4和8约分,最后等于。

  师:你是利用整数除以分数计算法则来计算分数除以分数的,但是这只是一个猜测,没有说服力,我们需要验证,怎样来验证分数除以分数也可以转化为分数乘法来计算?大家想,我如果我们用刚才简单的分饼初级操作来验证力不从心。老师给大家介绍一种新的方法,叫做演算法。演算法是你经过深入学习数学常用到的一种方法。根据知识的新旧承接,利用旧知识迁移、转化,算出结果,要想用演算法验证整数除以分数同样适用于分数除以分数需要用到哪些旧知识?

  生:商不变的性质

  师:对,你怎么这么聪明!你怎么想到的?

  生:两个数互为倒数,相乘是1,乘等于1,所以除以,用乘。

  师:还需要用到哪些知识?提示:分数除法就要用到分数与除法的关系?

  生:a÷b=b分之a,b不等于0

  师:太棒了,商不变的性质用文字说明一下吗?

  生:被除数和除数同时乘或除以不为0的数,商不变。字母表达式里的C表示什么(相同的倍数)

  师:还有除数的性质

  知识链接:

  1.分数与除法的关系:b分之a=a÷b,b不等于0

  2.商不变的性质:a÷b

  =(a×c)÷(b×c)

  =(a÷c)÷(b÷c)【c≠0】

  3.除法性质的扩展应用:a÷b÷c=a÷(b×c)a÷(b×c)=a÷b÷c

  a÷(b÷c)=a÷b×c

  生:A除以B除以C等于A除以B乘C的积

  师:还有除法性质的逆运算,还有性质扩展。

  请同学们利用这些知识链接小组合作完成学习单上的第二部分内容

  老师巡视,抽取样本(独立完成时间:1分25秒。小组合作时间:3分钟)

  师:同学们想出验证方法

  生1:根据商不变性质验证(附:验证方法)

  师:说的特别好,为什么。没想打到你们验证出来,我在备课时想到一种验证方法,谁看懂老师的方法?结合每一步说一说运用了什么?

  指名回答

  师:分数与除法关系及除法性质应用这些步骤要为了说明什么?

  生:一个数除以另一个数等于这个数乘另一个数倒数

  (三)探究分数除法法则

  师:整数除以分数对分数除以分数同样适用。昨天和孟老师学习分数除以整数,今天学习分数除以分数,其实这些都是分数除法,所以算法及算理是相同。用一句话总结分数除法算法法则、

  生:除以一个数等于乘这个数倒数

  师:计算分数除法转换为分数乘法计算

  虽然我们只有一节课的缘分,但是你从我这里学习的不是有限的知识,而是学习数学的思想方法、习惯。我有一个习惯,把数学文字用哪个字母表达出来。现在请同学们用字母表达式表达分数除法的计算法则。

  生:a÷b=a×。

  师:对b做说明

  生:b不等于0

  师:我们接下来进行一场实战演习。指名读学习指南。老师巡视

  (学生完成时间:3分钟10秒小组讨论时间:5分钟)

  师:出示学生样本,请学生讲一讲填表过程

  生:根据除数特征填表,除数大于1,商小于被除数,除数等于1,商等于被除数,除数小于1,商大于被除数。

  师:解释一下字母表达式。

  存在疑问:

  1.只能用ABC表示吗?(任意)

  2.字母只能代表分数吗(分数,小数,整数)

  师:计算分数除法注意什么?

  生:除以一个数要变成乘这个数的倒数。

  师:总结:变-不-变(除号变乘号除数不变不除数变倒数变)

  这有一道题,说思路

  总结:小数,分数在一起,解决策略是什么?

  生:小数变分数

  三、课堂总结:不管计算加减乘除,先同意数的形式,再计算。

  你们不仅凭自己收获数学知识,还掌握数学方法思想解决策略。同学们你们太棒了!

更多优质范文、模板、稿件、作文请关注微信公众号(本站右侧),找素材就来“八零资讯”。

上传您的稿件,人人都是创作者!

[精选]沙滩的童话教学设计

[精选]沙滩的童话教学设计  作为一名人民教师,通常需要用到教学设计来辅助教学,教学设计是一个系统化规划教学系统的过程。...

[精选]沙滩的童话教学设计
五年级小数除法教学反思范文

五年级小数除法教学反思范文(通用20篇)  在日常生活和工作中,我们的任务之一就是教学,反思自己,必须要让自...

小学“国庆假期安全教育”主题班会

小学“国庆假期安全教育”主题班会   上学的时候,大家都听

《小青石》教学设计

《小青石》教学设计   作为一名教学工作者,时常要开展教学

《宿新市徐公店》教学设计

《宿新市徐公店》教学设计   作为一位杰出的老师,常常要写

除数是整数的小数除法的教案(精选15篇)

除数是整数的小数除法的教案(精选15篇)   作为一位杰出

除数是整数的小数除法的教案(精选15篇)
发表新年致辞

发表新年致辞(精选6篇)发表新年致辞 篇1  全体职工及家属朋友们:  光阴似箭,白驹过隙。欢乐祥和的春节,踏着兔年的蹄

广告经营租赁协议

广告经营租赁协议(通用3篇)广告经营租赁协议 篇1  甲方:  乙方:  甲方为了进一步扩大其影响,充分利用自身优越的地

中小学安全教育日心得体会范文

中小学安全教育日心得体会范文(通用29篇)中小学安全教育日心得体会范文 篇1  安全工作是一项长期而艰巨的工作,我们将时

师德规范学习心得体会

师德规范学习心得体会(精选11篇)师德规范学习心得体会 篇1  跨入新世纪的今天,如何有效开展思想品德教育,已成为一个摆

文化传播公司墙体广告协议

文化传播公司墙体广告协议(精选29篇)文化传播公司墙体广告协议 篇1  甲方:  乙方:  甲乙双方本着互惠互利的原则,

婚前子女抚养权的协议

婚前子女抚养权的协议(精选3篇)婚前子女抚养权的协议 篇1  甲方(男方):________  乙方(女方):_____

复制 微信 置顶

添加微信号